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Abstract

Introduction

Given a two-dimensional mesh Γh with N vertices x dh->vec[i], i = 0, . . . , N−1, the goal is to rearrange
the grid points, typically in order to obtain a nicer mesh. The idea is to compute a conformal map φh

from Γh to the sphere S2 with the method described in [1] and to re-project a nice mesh with vertices
y dh->vec[i], i = 0, . . . , N − 1, given on S2 to Γh.
Based on ALBERTA-routines, the function reparam cm (DOF REAL D VEC *y dh, DOF REAL D VEC *x dh,

struct reparam cm data *crd) performs the following steps:

1. compute a conformal map φh : Γh → S2, i.e., a minimiser of the Dirichlet energy

D(φh) :=

∫

Γh

1

2
|∇Γh

φh|
2,

2. project the vertices of a given nice mesh on S2 to the induced mesh φh(Γh) on S2,

3. create a new mesh of Γh by applying φ−1

h to the projected vertices and compute the values of other
fields, stored in crd->drvl, crd->drdvl, on Γh in the new vertices.

Restrictions:

• two-dimensional meshes of sphere topology in three-dimensional space,

• linear finite element functions,

• UZAWA solver contains some bug; use GMRES solver,

• the mesh on S2 induced by y dh must be oriented such that the normal n on a triangle with vertices
p0, p1, p2 (ordered in this way), computed via n = (p2−p1)× (p0−p2), points away from the origin,
i.e., n · pi > 0 for all i.

Some notation

The vertices of Γh also are denoted by xi := x dh->vec[i], i = 0, . . . , N − 1. Linear finite elements are
considered on Γh, i.e., the spaces

Vh :=
{

v ∈ C0(Γh, R)
∣

∣ v|T ∈ P1(T, R) for all triangles T ∈ Γh

}

, V h := V 3

h .

The standard basis function of Vh are denoted by {bi}
N−1

i=0
, a basis of V h then consists of the functions

{ekbi}
N,2
i,k=0

where the ek are the standard basis of R
3. For a function φh ∈ V h we introduce the notation

φik := φh(xi) · ek, φ
k

:= (φik)N−1

i=0
, φ := (φik)N−1,2

i,k=0
, φi := (φik)2k=0.
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By the vertices y dh->vec[i], i = 0, . . . , N − 1, and the topology given by Γh a mesh is induced on
S2. We write S2

h for this discretised sphere. A parameterisation uh : S2

h → Γh is defined by mapping
y dh->vec[i] to x dh->vec[i], i = 0, . . . , N − 1.

Computation of the conformal map

Essentially explained in [1]. The goal is to minimise D(φh) subject to constraints as follows. First, we
want that

φi ∈ S2, i = 0, . . . , N − 1.

Further constraints occur since harmonic maps are unique only up to the conformal group of S2. Let

Ml(φh) := el ·

∫

S2

h

(φh ◦ uh)(y)dH2(y), l = 0, 1, 2,

Ml(φh) :=

∫

S2

h

(φh ◦ uh)(y) · ZlydH2(y), l = 3, 4, 5

where the matrices

Z3 =





0 −1 0
1 0 0
0 0 0



 , Z4 =





0 0 −1
0 0 0
1 0 0



 , Z5 =





0 0 0
0 0 −1
0 1 0





are a basis of the skew symmetric real 3 × 3 matrices. Let us introduce the vectors

ml := {Ml(ekbi)}
N−1,2
i,k=0

, l = 0, . . . , 5.

The additional constraints then read

0 = Ml(φh) =

N−1,2
∑

i,k=0

ml
ikφik = ml · φ, l = 0, . . . , 5.

Remark: Those linear constraints depend on the manifold to which φ maps. E.g., there are less con-
straints for a torus.

The constraints are taken into account with Lagrange multipliers λ = (λ0, . . . , λN−1) ∈ R
N and ρ =

(ρ0, . . . , ρ5) ∈ R
6. We define

F (φ, λ, ρ) :=
1

2
φ · Aφ +

1

2

N−1
∑

i=0

λi

(

|φi|
2 − 1

)

+
5

∑

l=0

ρlm
l · φ.

Now, the target is to solve
F ′(φ, λ, ρ) = 0

with a Newton method. The first and second derivative of F are stated below. To compute the new
search direction

dm := (F ′′(φm, λm, ρm))−1F ′(φm, λm, ρm)

we have to solve a linear system with a matrix of saddle point structure. GMRES is a possible method.
Data for this solver must be provided in the structure crd->spp gmres data. Data for the Newton
method as tolerance, maximal iteration number etc. in the structure crd->ns data.
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Here are the formulas for the derivatives of F :

F,φ(φ, λ, ρ) = Aφ +
(

λiφi,k

)N−1,2

i,k=0
+

5
∑

l=0

ρl · m
l,

F,λ(φ, λ, ρ) =
1

2

N−1
∑

i=0

(

|φi|
2 − 1

)

,

F,ρ(φ, λ, ρ) =
(

ml · φ
)5

l=0
,

F,φφ(φ, λ, ρ) = A +





diag(λ)
diag(λ)
diag(λ)



 ,

F,φλ(φ, λ, ρ) =





diag(φ
0
)

diag(φ
1
)

diag(φ
2
)



 = F,λφ(φ, λ, ρ)T ,

F,φρ(φ, λ, ρ) =
(

m0, . . . , m5
)

= F,ρφ(φ, λ, ρ)T ,

F ′′(φ, λ, ρ) =

























A + diag(λ) 0 0 diag(φ
0
) | |

0 A + diag(λ) 0 diag(φ
1
) m0 · · · m5

0 0 A + diag(λ) diag(φ
2
) | |

diag(φ
0
) diag(φ

1
) diag(φ

2
) 0 · · · · · · 0

— (m0)T —
...

. . .
...

...
...

. . .
...

— (m5)T — 0 · · · · · · 0

























Sometimes, blocks of dimension N × N have been used, and the dimension index arranges the ordering
of the blocks. The following abbreviations were used:

A =
(

δklAij

)N−1,2,N−1,2

i,k,j,l=0
, Aij =

∫

Γh

∇Γh
bi · ∇Γh

bj,

diag(λ) =
(

δijλi

)N−1,N−1

i,j=0
,

diag(φ
k
) =

(

δijφik

)N−1,N−1

i,j=0
.

Vertex projection

The new mesh on Γh is defined by re-projecting the vertices y dh->vec[i] with φ−1

h from S2

h to Γh. For
this purpose, the vertices must be projected to the mesh φh(Γh) induced by φh on S2:

1. Projections to close triangles: First, run over all elements T ∈ φh(Γh). For a triangle T denote
the vertices with φh(x dh->vec[il]), l = 0, 1, 2. Now, check whether the orthogonal projections
pril

of the y dh->vec[il] to the plane in which T lies are indeed on T . If this is the case for, let’s
say, pril

then

• compute the barycentric coordinates and store them in barcor[k]->vec[il], k = 0, 1, 2,

• store the corresponding global indices ik in gdof[k]->vec[il], k = 0, 1, 2,

• set nbc->vec[ik] = 3, i.e., the number of barycentric coordinates.

2. Projections to other triangles: Second, run again over all elements T ∈ φh(Γh). For each
triangle T now run over all (not yet projected) vertices y dh->vec[i] and try to project them to
T as described in the former point. Since we consider meshes on the sphere there may be triangles
onto which an orthogonal projection is possible. To select the right one the scalar product of the
vertex with the external unit normal of T with respect to the sphere is checked to be positive. Here,

we need the constraint on the orientation of the mesh induced by y dh on S2.
3



REFERENCES

3. Projection to edges: There might still be unprojected vertices lying over edges or other vertices
of φh(Γh). A third run over all not yet projected vertices y dh->vec[i] is performed. For each such
vertex (w.l.o.g. with index i) a loop over the triangles T ∈ φh(Γh) is performed. The distance of
y dh->vec[i] to each edge of T is computed. This way, the closest edge is found. Finally,

• compute the barycentric coordinates with respect to the closest edge and store them in
barcor[k]->vec[i], k = 0, 1,

• store the global indices i0, i1 corresponding to the vertices defining this edge in gdof[k]->vec[i],
k = 0, 1,

• set nbc->vec[ik] = 2 (number of barycentric coordinates).

The field nbc, initialised with zero, is also used as a flag field to indicate whether a vertex has already
been projected or not.

Creation of the new mesh

The fields nbc, barcor, gdof computed during the projection are used to obtain a new mesh on Γh as
follows. Observe that the projection pri of y dh->vec[i], i ∈ {0, . . . , N − 1}, to φh(Γh) is

pri =

nbc->vec[i]
∑

k=0

barcor[k]->vec[i] φh

(

x dh->vec[gdof[k]->vec[i]]
)

.

Applying φ−1

h yields because of the linearity of φh on each triangle

xnew dh->vec[i] := φ−1

h

(

pri

)

=
nbc->vec[i]

∑

k=0

barcor[k]->vec[i] x dh->vec[gdof[k]->vec[i]].

Other fields belonging to Vh or V h can be adapted similar to x dh. Exemplary, for s h ∈ Vh:

snew h->vec[i] :=

nbc->vec[i]
∑

k=0

barcor[k]->vec[i] sold dh->vec[gdof[k]->vec[i]].
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